Physical mapping of human chromosomes by repetitive sequence fingerprinting.
نویسندگان
چکیده
We have developed an approach for identifying overlapping cosmid clones by exploiting the high density of repetitive sequences in complex genomes. Individual clones are fingerprinted, using a combination of restriction enzyme digestions followed by hybridization with selected classes of repetitive sequences. This "repeat fingerprinting" technique allows small regions of clone overlap (10-20%) to be unambiguously assigned. We demonstrate the utility of this approach, using the fingerprinting of 3145 cosmid clones (1.25 x coverage), containing one or more (GT)n repeats, from human chromosome 16. A statistical analysis was used to link these clones into 460 contiguous sequences (contigs), averaging 106 kilobases (kb) in length and representing approximately 54% (48.7 Mb) of the euchromatic arms of this chromosome. These values are consistent with theoretical calculations and indicate that 150- to 200-kb contigs can be generated with 1.5 x coverage. This strategy requires the fingerprinting of approximately one-fourth as many cosmids as random strategies requiring 50% minimum overlap for overlap detection. By "nucleating" at specific regions in the human genome, and exploiting the high density of interspersed sequences, this approach allows (i) the rapid generation of large (greater than 100-kb) contigs in the early stages of contig mapping and (ii) the production of a contig map with useful landmarks for rapid integration of the genetic and physical maps.
منابع مشابه
DNA Fingerprinting Based on Repetitive Sequences of Iranian Indigenous Lactobacilli Species by (GTG)5- REP-PCR
Background and Objective: The use of lactobacilli as probiotics requires the application of accurate and reliable methods for the detection and identification of bacteria at the strain level. Repetitive sequence-based polymerase chain reaction (rep-PCR), a DNA fingerprinting technique, has been successfully used as a powerful molecular typing method to determine taxonomic and phylogenetic relat...
متن کاملA test case for physical mapping of human genome by repetitive sequence fingerprints: construction of a physical map of a 420 kb YAC subcloned into cosmids.
A rapid and safe method of Yeast Artificial Chromosome (YAC) physical mapping by cosmid 'fingerprinting' is presented. YACs are subcloned into cosmids which are prepared without previous separation of cloned DNA from host DNA. Groups of overlapping clones are detected according to their restriction fragments size and intensity after hybridization with total human DNA. To test this approach, a c...
متن کاملPhysical chromosome mapping of repetitive DNA sequences in Nile tilapia Oreochromis niloticus: evidences for a differential distribution of repetitive elements in the sex chromosomes.
Repetitive DNAs have been extensively applied as physical chromosome markers on comparative studies, identification of chromosome rearrangements and sex chromosomes, chromosome evolution analysis, and applied genetics. Here we report the characterization of repetitive DNA sequences from the Nile tilapia (Oreochromis niloticus) genome by construction and screening of plasmid library enriched wit...
متن کاملIdentification and mapping of expressed genes, simple sequence repeats and transposable elements in centromeric regions of rice chromosomes.
The genomic sequences derived from rice centromeric regions were analyzed to facilitate the comprehensive understanding of the rice genome. A rice centromere-specific satellite sequence, RCS2/TrsD/CentO, was used to screen P1-derived artificial chromosome (PAC) and bacterial artificial chromosome (BAC) genomic libraries derived from Oryza sativa L. ssp. japonica cultivar Nipponbare. Physical ma...
متن کاملExpressed sequence tags and chromosomal localization of cDNA clones from a subtracted retinal pigment epithelium library.
Expressed sequence tags (ESTs) provide useful molecular landmarks for physical mapping and identify the position of an expressed region in the genome. The use of subtracted cDNA libraries enriched for tissue-specific genes as a source of ESTs should reduce the repetitive isolation of constitutively expressed sequences. We report here the sequence tags from the 3'-end region of 58 new directiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 16 شماره
صفحات -
تاریخ انتشار 1990